4/2^x=64^x

Simple and best practice solution for 4/2^x=64^x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/2^x=64^x equation:



4/2^x=64^x
We move all terms to the left:
4/2^x-(64^x)=0
Domain of the equation: 2^x!=0
x!=0/1
x!=0
x∈R
We multiply all the terms by the denominator
-64^x*2^x+4=0
Wy multiply elements
-128x^2+4=0
a = -128; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-128)·4
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{2}}{2*-128}=\frac{0-32\sqrt{2}}{-256} =-\frac{32\sqrt{2}}{-256} =-\frac{\sqrt{2}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{2}}{2*-128}=\frac{0+32\sqrt{2}}{-256} =\frac{32\sqrt{2}}{-256} =\frac{\sqrt{2}}{-8} $

See similar equations:

| 3y+4+3y=-14 | | x=76/4=10 | | -5y-17=-22 | | 9+5x=-x+51 | | x/11=-6 | | w/2+18=14 | | -21x+7=-21 | | -y+2(y+y)=27 | | w2+18=14 | | 3250−m=2(m−500)+1500 | | 7x+5-5x=-19 | | 3250−m=2(m−500)+1500. | | 6x+5=2x+0 | | 0=4+y/5 | | 1/4b+15=14 | | a3+15=6 | | 4+2x=2(x+2)-3(x-4) | | 3x+7+3x=37 | | 3x=114+3 | | 2(x+4)–12=44,x=24 | | 10^x=1/0.001 | | -24+26z=-16 | | 48=-2b+4 | | 3x=114=3 | | -4(v-5)=-2(v-6) | | b/9+4=5 | | 5n-2=-3n+4 | | -6x+10+x=30 | | 2(x-4)-17=13-3(x+2) | | 3a-7/4=2 | | 1/3x+1=9 | | –5.1+b=–7.1 |

Equations solver categories